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BUSINESS PROBLEM FRAMING

In a crowded market of fast-food chains, it's essential to stand out and appeal to
customers better than the competition. One way to achieve this is by showing the
customers are cared for and a more personalized experience them feel
valued. Research indicates 54% of retailers claimed that product recommendations
act as the key driver of the AOV (average order value) in customer purchase
(Skovhgj, 2022). This study enables to accurately predict when and what a
customer will order next allowing this food brand to target and cluster users more
granularly results in following benefits:
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ANALYTIC PROBLEM FRAMING

Increase the conversion rate of customers and improve customer life cycle

for the fast-food chain factoring the varying buying pattern from a vast pool of
customers. Assuming, the sample transactional data reflects the fast-food entire
customer persona and buying patterns accurately, the recommendation model built
In this study successfully

1.Buckets users based on their 2. Predicting >=1 item of the bucket of
potential next visit day products in the customer's next order
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« Sample set is one year of transaction
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DATA

Feature Priority:

» Relationship between customers and
products

» Date difference between orders

of transactions for 25,000 customers
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MODEL BUILDING
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Fig 6. Product prediction basket model accuracy filtering for unordered
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predicting the company’s most popular items to all users
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Fig 7. Collaborative & content filtering predicting new items

Date Prediction Accuracy

Training Set Accuracy  mValidation Set Accuracy

100% 100% accurate at predicting those iIn
90% 90% cluster ordering >50 days in
80% 80% future

70% 0% | * Training on Q1-Q3 transaction

0 to 20 days 20 to 50 days More than 50 days

clusters

Fig 8. Date prediction clustering accuracy

Classification model most

Made-to-Order: Targeted Marketing in Fast-Food Using Collaborative Filtering

BUSINESS IMPACT ASSESSMENT

To translate the effect of increas

ed prediction accuracy on conversion rates

and per-order spending, the below A/B test presents customers with one
of two advertisements: one informed by the personalized customer prediction
baskets and one for the brand’s most popular products across users

nationwide
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