

# Made-to-Order: Targeted Marketing in Fast-Food Using Collaborative Filtering

School of Business





next order in 75% of the test set with a basket of 3 items vs 51% generically

Fig 8. Date prediction clustering accuracy

- Training Data Q1-Q3 transactions **Prediction Data** Q4 transactions Improvement Areas
- Penalize previously recommended products not ordered
- Baskets of n products predicted to be in the users next order based on % order inclusion (actual for previously ordered items or predicted per collaborative filtering for unordered products)
- Collaborative filtering is more accurate in predicting items from entire product universe Content-based approach **1.5x more** accurate than collaborative filtering at predicting basket of previously unordered items (across all recommendation basket sizes 1-5)
- Classification model most accurate at predicting those in cluster ordering >50 days in future
- Training on Q1-Q3 transaction
- Prediction designed to parse customers likely ordering in the few weeks

Improvement Areas - Retain accuracy while creating more granular clusters









### **BUSINESS IMPACT ASSESSMENT**

To translate the effect of increased prediction accuracy on **conversion rates** and per-order spending, the below A/B test presents customers with one of two advertisements: one informed by the personalized customer prediction baskets and one for the brand's most popular products across users nationwide



## ACKNOWLEDGEMENTS

Gratitude to Professor Matthew Lanham and our industry partner for this opportunity, their guidance, and support on this project.